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Phase transitions and chemical reactions in the presence of electromagnetic fields are considered. The
field-dependent differential of the internal energy is described using four basic independent terms. These terms
stand for the differentials of heaid S, mechanical work-PdV, work associated with mass trarlsteTN, and
work delivered by the current sourdéH-dB. In this context, the field-dependent temperatlifepressure
P, and chemical potentia] are the intensive conjugates of the field-independent ent&pyolumeV, and
massN, respectively. In this context isothermal and isobaric processes in the presence of the field must satisfy
the condition of fixedT and fixedP, respectively. In an isothermal process, the heat delivered to a system
where an entropy changksS occurs isTAS. Consequently, the latent heat of phase transitiowhich is
TAs, is T/T times its value in the absence of the field. An extended Clausius-Clapeyron equation is derived,
where the effect of the field is expressed in terms of an equivalent entropy change due to the phase transition.
Different forms of mass action laws are formulated, so as to account for the effect of the field on pressures or
activities of reactants and products of chemical reactions. These pressures, or activities, are modified by
field-dependent factors, so that the reaction constant remains a sole function of temperature, irrespective of the
presence or absence of the field. For permeable materials, these correction factors are positive, but less than
unity, and their effect is to increase the corresponding pressures, or activities, above their “field free” equi-
librium values. The van't Hoff equation for a single reaction is extended in terms of the change in the heat of
reaction due to the presence of the field. Simultaneous reactions that in the absence of the field are independent,
become interdependent when the field is present through their collective effect on the mixture permeability.
The effect of replacing the constraint of a fixBdield, by a fixedH field, is shown to result in reversal of the
effect of the field on phase transitions and chemical reactions. Finally, it is shown that on a molecular scale of
paramagnetic substances such as paramagnetic ideal gases, the magnetic effect is expected to be significant at
low cryogenic temperatures. At sufficiently low temperatures, this effect can become dominant. At ordinary
temperatures, the field can have a dominant effect on colloidal particles having diameters of a few nanometers
and larger[S1063-651X97)12204-§

PACS numbd(s): 64.60—i

INTRODUCTION THEORY

In what follows, we set the grounds for the development

Recently the theory of thermodynamics in the presence °6f the theory of phase transition and chemical reactions in

electromagnetic fields was formulatet] and then followed o yresence of quasistatic electromagnetic fields. To this

by system analysis of field-dependent thermodynamic varigng \ve first recapitulate formulations and physical meanings
ables and Maxwell relatiorf2]. This theory provides formu- 4 fie|d-dependent variables, and then use them for analysis
lations of different field-dependent intensive and extensiveyf phase transitions and chemical reactions.

variables that also depend on constraints imposed on the

field. Each of these field-dependent intensive variables was A. Field-dependent variables

defined as the partial derivative of the field-dependent energy . .

with respect to its conjugate extensive variable. In contrast to The following theory concerns systems in the presence of
! . o . magnetic fields. The differential of the field-dependent inter-

conventional, field free, thermodynamics, the field- T

dependent energy possesses the property that it can ex%{f‘l energyU, is given by[1]

within and outside physical boundaries of a thermodynamic L

system. This is true, provided that the latter is the source of dU=>, & dX+dUy, (1)

the field, where the energy is stored. These unique properties =0

of thermodynamics in the presence of fields must be reflectegqore

also in the transfer of energy as heat, mechanical work, and

mass and in the laws of phase transitions and chemical reac- &=(0UldX)x., 1#j, 1,j=0,..n, (2

tions. In this work the characteristics of phase transitions, :

regarding latent heat and the Clausius-Clapeyron equatiosk; is the ith, field-independent, extensive variablg),

and chemical reactions in the presence of fields are formu=U (H=0) is the energy in the absence of the field, and

lated. Uy is the magnetic energy.
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B electromagnetism, this distribution of the field depends on

Uy= Jv'fo H-dBdV’, (3)  the boundaries of the system, i.e., on its geometry and vol-
umeV. It follows thatU,, is a function of the permeability,
B=uH, 4) M, field (eitherH or B), volumeV, and the geometry of the

system. This implies that, apart from the field, the surround-
whereH andB are the magnetic field strength and magneticings of the system are invariable. In a single component iso-
induction, respectively, and is magnetic permeability. The tropic and homogeneous system, the permeability is a func-
volume V' spans the entire field and in the general case ition of the temperatur&, densityp, and fieldH,
extends to infinity, so as to include the whole space. If, as a
special case, the magnetic field is confined to a voliume u=p(p,T,H). (12)

whereH and u are uniform andu is independent off, then . .
H s : The temperature is a function of the entroy volumeV,

Uy=3VH-B=3iVuH?=1VBu. (5) and masdN of the system

Supposd1] Uy, is a function of a set consisting ai” vari- T=T(S,V,N), (13
ablesY,,, m=1,...m",
andp is given by
UM:UM(Yl,Yz,...,YmH). (6)

; . _ p=N/V. (14
Suppose further that this set can be separated into two inde-

pendent subsets. In the first subset, which consistmof |t follows that

—1 functions,Y,,, m=1,...m’'—1, is dependent only on

the current sources of the field, and consequently it is inde- w=u(S,V,N,H). (15)
pendent of the system variabl¥s. In the second subset, the

m”—m’+1 functions,Y,,, m=m’,....m", which are given If the geometry of the system is fixed, then the magnetic

by energy becomes a function 8f V, andN and the field(i.e.,
eitherH or B). It is convenient to choosB as the indepen-
Ym=Ym(Xo,.--.Xpn), (7)  dent field vector. This gives
are independent of the current sources of the field. Thus the _
differential of Uy, can be expanded as follows: Un=Un(SV.N.B). (16
m' -1 Note that the se§,V,N,B can be separated into two inde-
_ pendent subsets. The first subset includes field-independent
dUw mE:l (U /Y m)d Yy variables only, and as such it reflects the field-independent

thermodynamic properties of the system. This subset is
" m S,V,N and, in general notation, it is presented as
+ (é’UM/ﬁYm)Z = 4% ®  Xp,....X,. The second subset, i.e8, stands here for the
m=m’ =0 ' independent effect of the current sources. Replacing the sub-
where the partial derivatives are taken, holding all other variset, S,V,N, in Eq. (10, by the general notation of
ables(on which the function depengfixed. Xor---:Xp gives
Combining Egs(1) and (8) gives

7"

3

Uy=Uu(Xg,---.X,,B), (17)
n m' -1
dU=> &dX+ >, (dUn/dYm)dYs, 9) n
=0 m=1 dUy=> (AU 19%;)x, X+ (9U /9B) B,
i=0
M Uy aY
~ M m . ..
=&+ - 10 i#j, i,j=0,...n. 18
=6+ 2y oy (10 joi] (18
where Comparing Eqs(8) and(18) shows that, as expected,
~ ~ . . m//
G= (V1K) vy 11, (Un13X)= D (U aYm) (Y mldX), (19
ij=0,..n, m=1,..m—1 (11) m
m' -1
andU), is given by Eq.(3). Suppose the volume of a mag- U JaY Y= (U [9B)~ dB 20
netized system i¥/. In the general cas&, andV' differ as mz:l( M mdYn=(Un )XJ ' 20

the field, due to the contents &f, can extend beyond the

system boundaries. Equation(20) implies thatB can be the result of the action of
The magnetic energy,,, as given by Eq(3), in con-  several(i.e., m’—1) current sources. We proceed now to

junction with Eq.(4), is a function of the field vectold and  formulate the field-dependent intensive variables, which,

B and the way they are distributed in space. By the laws ofimilar to those prevailing in the absence of the field, are the
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conjugates o, V, andN. We assume that the properties of pressureP as the integration factor. At fixed entrofy mass
the system allowdy, to be presented as a function Bf N, and fieldB, the only energy change can be due to me-
V, and u: chanical work sources. This shows that, in the presence of
the field, the term—PdV is indeed the mechanical work
Un=Un(B,V,u). (21) differential. In the absence of the fieRl=P and the con-

In accordance with the convention specified in the definitionventional pressure-volume work differential is obtained. The
of Egs. (6) and (7), here we haver;=B, Y,=V, Ys=p, thirdterm denotes the field-dependent energy differential due

andm’ =2, m"=3. Following Eq.(15), x is a function of 0 mass transfer. It is a function of the field-independent

S, V, N, andH, so that for evaluation of Eq10), X,=S, massN, with the field-dependent chemical potentjahs the
X;=V, andX,=N are used. Thus, from Eq10), for i=1, integration factor. At fixed entrop$, volumeV, and fieldB,

£=T, and&, =T, the only energy change can be due to mass transfer. This
R shows that in the presence of the field, the tefdN is
T=T+(dUn/dn)y s(dp! IS)y N.H (220 indeed the mass transfer energy differential. The fourth term
A A ' o has been already defined as the work delivered by the current
fori=2, ¢&=—P, andé,=—P, sources in magnetizing the system, at fixed entr8pyol-
. ume V, and massN. Assuming that the geometry of the
—P=—P+(dUy/dV), g+ (dUn/du)y g(du/dV)gn - system is also fixed, the fourth term represents the energy

(23) change due to the magnetization of the system, provided that
its field independent variables are held fixed during this mag-

Fori=3, 753= Z’ andé&;=¢, netization process.
- Recognizing the significance of the intensive field-
{=&+(Un/op)y s(dpul IN)s v 1 - (24 dependent variableg , and that their role in the presence of

Equations(23) and (24) were derived in an equivalent form the field is t.h.e §ame as that gf in !ts absence, thg condi-
elsewherd 1]. We focus our interest on Eq22) for further ~ tions of equilibrium are thag; be uniform[1]. In particular,
development of heat related energy changes in the presenéemUSt be the same across uncp.ns_trained interfaces, separat-
of the field. Note that had we selectetinstead ofB as the  iNg two systems that are at equilibrium.
field vector in Eq.(21), Egs. (22)—(24) would have been This gives rise to a jump ig; across the interface. From
different[1]. Eq. (10 this jump is given by

For systems that are uniformly magnetized, using Egs.

(22)—(24) and the fact that';=B, Eq.(9) takes the follow-
ing form: A&=—-A (U 1Y ) (Y mldX). 27

m=m’

17

3

dU=TdS-PdV+ 2dN+f /H~dB dv’. (25  The jump inT, P, and{, across interfaces at equilibrium in
v the presence of a fixeffl field, are readily obtained from Egs.

Note that the last term on the right-hand side of E2p)  (22)—(24) by imposing fixed values of, P, and{ across
stands for the work done by the current source in establisithese interfaces. Upon removal of the field, these jumps act
ing the field at fixedS, V, andN. If V/=V, and the com- to change the position of the interface and drive heat and
plete field is uniform and confined within the boundariesmass across thefi8]. The reverse, i.e., regarding the effect
enclosing the system, then E&5) reduces to the following ©f imposing a field on systems at equilibrium, is also true. In

simpler form[3]: the presence of the field, isothermal and isobaric processes
A . . are defined here, as those that are carried out at fixadd
dU=TdS-PdV+{dN+VH-dB. (26)  fixed P, respectively. It follows that such processes can exist

. — S _ at variableT andP, and vice versa.
The physical significance of the terms specified in @) is

discussed elsewhef8]. However, due to the importance of
understanding the utility of each of these terms, e.g., regard-
ing phase transitions and chemical reactions, their meaning is Permeable materials are characterized by/¢S)y \ 1
reiterated here. Equatioif®5) and(26) specify four types of <0. Using the fact that Uy /du)y,g<0, we obtain, at
terms that have a clear thermodynamic meaning. The firsixed B, T>T, and the effect of the field is to increase the
term stands for the energy differential that is a function oftemperature. It follows that for systems at equilibriuor

the field-independent entrop®, with the field-dependent rather quasistatic equilibriunin the presence of the field,
temperaturel as the integration factor. At fixed volumé  the change in hed due to a change in entroffy at fixed
massN, and fieldB the only energy change can be due to a:r, is given by

change in heat. This shows that, in the presence of the field, R

the termTdSis indeed the heat differential. In the absence of AQ=TAS. (29)

the field T=T and the conventional heat differential, i.e.,

TdS prevails. The second term stands for the field-This is also true for processes of phase transitions in the
dependent mechanical energy differential that is a functioPresence of the field, whe®Q/N is the corresponding la-

of the field-independent volumé, with the field-dependent tent heat:

B. Field-dependent heat and latent heat
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1=TAs, (290  Where here use was made of the Gibbs-Duhem equation in
the absence of the field, and=V/N is the molar volume.
s=S/N. (30) Equation(38) can be applied to one phase on tRerersus
T phase transition curve. Similarly, for the other phéde-
In the absence of the field the latent heat is noted by subscript)lat the same point,
I=TAs. (31) dzlzdé’l'f'dng:_SldT+U1dP+d§Ml (39)
Combining Egs(29) and(31) gives Subtraction of Eq(39) from Eq. (38) gives
i=I7/T. (32 (51-8)dT—(01—0)dP—d(Zy1—Lw)=0,  (40)
Substitution ofT from Eqg. (22 in Eq. (32) gives where here use was made of the fact that alongPtversus
N T transition curved{=d{; must be satisfied.
I=1+/T)(dUm/Ip)y s(dp! IS)y,n - (33 Solving Eq.(40) for dP/dT and using Eq(31) gives
It follows that if the system is permeable, thie)al, and the dP/dT=As/Av—A(d{y/dT)/Av
presence of the field causes an increase in the latent heat,
e.g., as compared to its value tt=0. =l/TAv—A(d{y/dT)/Av, (41)
If Eq. (5) applies then where
(MUn/dp)yg=—3VB* u?=—3VH? (34

As=s;—s, Av=v;—v,

and in this case, using Eqd.4) and(30), Eq. (33) reduces to
A(dZy/dT)=diy /dT—dy,/dT,

. | 1
I=1——=H*(dplds)ynn=1— 2 H2AS(Iul 9S)y n.h - diym/dT=d[(dUp/dp)y g(dulIN)sy w1/dT.  (42)

2pT
(39 If the system is magnetically linear and E§7) applies, then

In the presence of a fixeB field, the extra latent heat ex- #=#(p,T), and sinceB is fixed,
presses the heat used to build up the field when the perme- fu=n(p.T) 43)
ability decreases with an increase in the entr8piThe field M= emip:
is also expected to affect the Clausius-Clapeyron equatiorynd hence
which is derived next.

d{m=(3{wm/dp)tdp+(diw/dT),dT,

C. The Clausius-Clapeyron equation—dependence on field (44)
The chemical potential in the presence of the field can be
expressed asee Eq.(24)] If the permeability is a linear function of the densjiyas is
- the case with materials such as ideal gd8¢shat follow the
{={+im, (36)  Langevin equation, then
where ¢, is given by the magnetic term on the right-hand w=Kp+pug, K=K(T), (45)
side of Eq.(24).
If Eq. (5) applies, then at fixed, where, at fixed temperaturl, is a constant, ang. is per-
" meability of free space. In this cas&u/dp)s =K and Eq.
{m=—2H(9uldp)sy - (37 (37) takes the following form:
Differentiating Eq.(36) gives = — $B%K/ u?. (46)
dZ=d{+dfy=—sdT+vdP+dZy, (38)  Hence
|
1 -
(agM/aT),,zz H2(1—2uo/p)(dpldT),, H=Blu, B is fixed, (47)
1 .
(agM/ap)T:;2 H2(u—uo)?/w, H=Blu, B is fixed. (48)
Substitution of Eqs(47) and(48) in Eq. (44) and then the result in E¢41) gives
B® [(u—mo)?dp 1-2uo/u [du L
dP/dT= m—m Wd_'l'+W (9_T ) B is fixed. (49
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Equations(41) and (49) show that the slope of the versus  This facilitates the well-known formulation of the equilib-
T phase transition curve, in the presence of the field, is diffium, or mass action, constakt, as
ferent than the one prevailing in its absence. Accordingly,
the field is expected to produce a shift in the equilibrium, n
P versusT curve of phase transition. The ability to control —RTINK,= >, vidoi. (57)

. . .. . i=1
the field with a great degree of precision suggests that it can
be used for “fine tuning” of phase transition processes suchl.
as crystallization. In this context the field can be used for fast
precision adjustment of the pressure and temperature of the n
phase transition process. This is due to the fact that the effect K. = H pli (58)
of the field is practically instantaneous. The effect of the field Py
on the chemical potential must also be reflected in other
equilibrium systems. In particular, this applies to equilibriumHowever, in the presence of the field the sum on the right-
of chemical reactions that is discussed in the following sechand side of Eq(56) is no longer independent of the pres-

his leads to the following mass action 1346

tion. sure and composition of the reacting mixture. This is due to
the fact that at fixed, H is an inverse function of,, and u
D. Chemical reactions is a function[see Eq(12)] of the pressurédvia the density,
_ ) as well as composition of the reacting mixture. It follows
1. Single reaction that, in principle, Eq(58) cannot be used in the conventional
For a chemical reaction that is given by way in the presence of the field. This difficulty can be cir-

cumvented by modifying the pressure through manipulation
of Eq. (56) as follows:

:;1 viloi,» (59

'—z]_ ViAi:O, (50)

n
1
. . . _ —RTIn Piexp — === H?(auldp;
the condition of chemical equilibrium between theeacting .Hl[ ' [{ orT (ORI 9p)sy

species can be presented[4s-6]

n

> vi=0, (51)

=1

" . and the field-dependent mass action law becomes
whereA, , v;, and{; are the number of moles, stoichiometric
coefficient, and chemical potential of thil reacting species, n 1
i=1...n. K,= [P-exp{—— H2(dul dp;)

In the presence of fields, the same condition can be used P iﬂl ' 2RT fiopisy
by replacingZ; with ;. In this case we have

] Vi. (60)

Comparing Eqs(60) and (58) shows that the effect of the
noo field can be accounted for by applying a field-dependent cor-
> vii=0. (52)  rection factor on the pressuf;, i=1,...n. In this way
=1 Kp retains its previous meaning, which requires indepen-
dence of pressure, and composition, of the reacting mixture.
If Eq. (45) applies to theith component of the reacting
mixture, then Eq(60) can readily be shown to take the fol-

We consider first ideal gaseous systems, where ithe
chemical potential in the absence of fields, is given by

Li=Cloi+RTINP;. (53) lowing form:
By virtue of Eq.(24), n woH-M;]) "
Kp:inl Piex _TRTI v moMi=(ui—po)H,
~ = I
§i=Loi T RTINP+ (U /dp)y,g(dpl INi)s v h- (54) 61)

If Eq. (5) applies, which is expected to be true for ideal yherem; is magnetization of théth reacting species. Equa-

gaseous systems, then tion (61) shows that the field-dependent correction factor is
~ 12 exponentially dependent on the ratio of the magnetic energy
{i=LoitRTINP;—3H(duldpi)sy - (55 density(e.g., per unit mass of substances such as ideal gases

and its translational component of the thermal energy den-

Combining Egs(52) and(55) gives sity. Recall the convention that negative valuesipfare

n n assigned to reactants and positive ones to the reaction prod-
—RTI[] P/'=3 w[fo—tH2(auldp)sy]. (56)  UCtS:
il;[l ' 21 nldo=zHA(mlp)s vl (56) Since at fixed temperatui¢, is also fixed, the condition

that the field will have no effect on the product of the equi-
In the absence of the field, i.e., al=0, the sum librium pressure®; is obtained by setting the variabte(as
=, vi{oi is dependent on temperature but not on pressuredefined belowto zero:
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n

d(U—-TS+PV)=dG=—SdT+VdP+ {dN+dU,, .
2, vipoH-Mi/(2piRT) = a=0. (62) (65)
We stipulate that, for continua, the dependencdJgf on

If a>0, thenlli,P" must be larger than its value & g\, "\ "3,q 8 [see Eq.(16)] can be transformed to an
=0, so thatK, is maintained fixed and independent of the equivalent dependence d P, N, andB.

pressure. This means that the reaction is enhanced by the | this case

field toward the products. The reverse is true i negative.

The physical implication of this effect of the field can be dUyy = (U /19T)p nsd T+ (39U /9P)1 .60 P
described in terms of response of the system to field-related Y o
energy changes. #>0, then the overall negative magnetic +(dUpn /IN)1 p gdN+ (U /dB)1 p ndB.
energy change due to the reaction provides an additional

driving force, which shifts the equilibrium further, so that

more products are produced. The reverse applies for the ca - ;

of @#<0. Note that had we started the analysis with &) %mbmmg Eqs(65) and(66) gives

instead of Eq(55), the outcome would have been the same, .~
but of a more general nature. dG=—[S—(Un/dT)p N gldT+[V+(dUy/dP)7 ne]ldP

If a reacting mixture is not ideal, and as such possesses [ s+ (gUy /dN)t p g]ldN+[(dUy/B)t p n]dB.
imperfect properties, then the mass action constant can be o v

expressed in terms of activitiel rather thanP;, and the (67)
counterpart of Eq(61) is readily obtained as

(66)

It follows that

n
B moH - M;
Ka—iljl (aiexp{ o RT

whereK, is the mass action constant expressed in terms of
activities of the reactants and products. Similarly, replacin
the activities in Eqg.(63) by mole fractions yields a mass
action constant in terms of mole fractions of the species o
the reacting mixture.

Note that Eq.(63) has a wider scope in the sense that it [d(dUmIdN)1p gl dTlpNe=[d(Um/IT)p N/ N]TPe
can be applied to reactions in all three phases, e.g., gas, (69)
liquid, and solid. The significance of the magnetic correction
factor is enhanced when the field strength is increased, th%nd hence, as expected,
temperature is decreased, and for materials having higher
molar magnetic moment. Numerical examples that are illus-
trated in the Appendix show that at the current available field o ) )
strength, the magnetic correction factahich is also linked holds oonce again irrespective of the presence of the field.
to the latent heat of phase transitios significant in the Equation(70) leads to Eq(64). However, in the presence of
cryogenic region, where it can become dominant if the tem{he field K, can be presented as a field-dependent reaction
perature is sufficiently lowered. The presentation of the masBarametefsee Eqs(56)—(58), where the original, unmodi-
action law in the form of Eqs(60), (61), and(63) facilitates  fied, field-independent pressures are used to defjjeThis
the use of van't Hoff's equation for evaluation of the tem- 9IVE€S
perature dependence Kf,. This is due to the fact that, in
these equation¥ , retains its original meaning, and hence it 1
can be treated usping conditions that prevail in the absence of —-RT '”Kp+i21 Vis Hz(ﬁ/"/api)&v:;l vidoi -
the field. This also facilitates the use of the standard free (7
energy of the reaction for evaluation, in the conventional
way, ofK,, and vice versa. The van't Hoff equation is given As the right-hand side of Eq71) is a sole function of tem-
by perature, the left-hand side of this equation must also possess

) this property. Differentiating both sides of E.1) with re-
d InKp/dT=AH/RT", (64) spect toT and rearranging gives

] i, 63)  {{+(UnIIN)1pelldTipNe
=—{d[S—(dUn/dT)p ngl/IN}Tpg. (68)

q—|owever, due to the fact thatl,, is a state function and
fiUM is an exact differential, we have

(9¢1dT)p ng=—(3S/N)1p B (70

n n

whereAH is the heat of reaction in the absence of the field g 1qnk /dT
The heat of reaction in the presence of the field is expected to P

be different fromAH, since it must account for the field-

dependent changes in heat that are the outcome of the reac- :[AH +Td / dT] / T.
tion. In what follows, we derive the field-dependent heat of

reaction. We transform E@1) so as to obtain the counterpart (72
of the differential of the Gibbs function in the presence of

magnetic fields: If Eq. (45) applies, then Eq(72) takes the following form:

n
1
Zl Vi H2(aul dpi) sy
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/ RT2.

(73)

55

function of temperature, and hence it retains its original
“field free” properties. It follows, that the selection of this
presentation oK ,; leads to interdependence of the reactions
via their common fieldH, e.g., through their modified pres-
sures. At fixedB, the fieldH is inversely proportional tqu.

It is clear that in the case of a reacting mixtugeis a func-
tion of composition, temperature, and the field. This can be

d InK,/dT

AH+Td

n
2 Vil.LoH' M,/Zp,) / daT
=1

It is necessary to verify first that the terms involving sums of XOr d as follows:
magnetic energy densities in EqZ2) and(73) indeed rep- expressed as 1ollows:

resent heat interaction with the field. This is true due to the w=n{pi},T,H)
fact that at fixedB (which here implies also fixed flux link- S

age at the current sourgesio energy exchange between the where{p;;} denotes the complete set of densities in the mix-
field and its current sources can occur. Furthermore, sincgire. Equations61) and (63) show that for mixtures that
the reaction takes place at fixed pressure within a uniforngatisfy Eq.(45), the common magnetic effects of all compo-
field as part of a continuum, no mechanical interactions withents present in a single reaction mixture is through the field
external sources that involve the field exist. This leaves ﬁeldH=B/,u({pi},T,H), whereas the magnetic self-effect of a
heat interactions as the only outcome of the reaction thagpecific, i.e.,ith, component is through the ter,/p;.
involves changes in the energy of the field. Equatiof®  Similarly, in simultaneous reactions, the common magnetic
and(73) show that, aH>0, if the temperature derivative of effect of all reacting components is through the fi¢id

the change in the magnetic part of the chemical potential= B/u({p;i}.T.H), whereas the specific effect of tri¢h

due to the reaction, is pOSitive, then the heat of reaction i%omponent of thqth reaction is through the teeri /pjl .
expeCted to be Iarger than thatlt=0. In this context, at Thus, the equi”brium must be found by So|ving m$imu|-
fixed B, if upon completion of the reaction, a decrease in theaneous equations given by E€f5). It is only when the
magnetic energy density of the mixture occushich is  effect of the field is small enough that the simultaneous re-
larger in magnitude than any work that might have beerpctions can be approximated as being independent. In this
delivered, by the field, to external mechanical sourct'®n  context, the assumption of independence of the reactions can
heat is released by the field due to this reaction. This fieldpe used as a first iteration in the solution procedure.
dependent heat becomes part of the heat of reaction. If, dur- The theory has been presented here for the case offixed
ing the reaction at fixe®, no work is delivered by the field fields, which implies that no energy exchange between the
to external mechanical sources, then the entire Change in tl%g/stem and current sources of the field exist. However, con-
field energy of the mixture turns into the field-dependent heatraints other than fixeB can be imposed on the system. For
of reaction. The reverse is true when the energy of the fieldxample, the constraint of a fixdgifield can be replaced by
builds up due to the reaction. This buildup of field energy isa fixedH field. This latter constraint allows energy exchange
expected to draw on the heat sources of the system, thusetween the current sources and the system, and hence the

reducing the heat available from exothermic reactions.  meaning of field-dependent thermodynamic variables must
Hitherto we have considered single reactions. The effec¢hange accordinglfi].

of the field on simultaneous reactions and their interdepen-
dence is considered next.

j=1...j" i=1..n;, (76

E. Fixed H fields

In fixed H fields, B is a sole function ofu; see Eq.(4).
. . - Hence, by virtue of Eq915) and(16), U,, becomes a func-
In the absence of the field, if there exjst independent tion of S, V, andN, e.g., in the sense that these are the

reactions that take place simultaneously, then the equilibrium _ . . .
of the jth reactionj=1,... ', that involves a total o, variables whereby the magnetic energy can be changed. This

2. Simultaneous reactions

reacting components, is given by can also be inferred from E@21), onceB is replaced byH

' as the independent variable. At fixeld Uy, becomes a func-
tion of V and u, which is equivalent to being a function of
S, V, andN. Here the field-dependent thermodynamic vari-
ables retain the form given by Eq®R2)—(24) provided that
B, in the subscripts of the partial derivatives involving
Uy, is replaced byH as an indication that this field vector is
being held fixed. Using this new field-dependent set of inten-
sive variables, e.gT, P, and{ at fixedH, Eq. (26) is re-
placed by

N

sziZjFO, j=1...j" i=1..n;.
i=1

(74)

In the presence of the field the counterpart of E&f) is
obtained by replacing;; with j; . The result is

n; R

dU,=TdS—PdV+{dN, H is fixed.  (77)

However, in the presence of the field the reactions are no o _
longer independent. This is a consequence of variability off hus, the thermodynamic significance of the field-dependent
permeability, and magnetic energy, with composition of thesetT, P, and{, is retained, irrespective of the selectionBof

mixture as the reactions proceed.

or H as the fixed field. It follows that the theory developed

The mass action law for each reaction can be presented ifor the case of fixed fields can be applied directly to fixed

one of the forms given by Eq$60), (61), and(63). In this

way the reaction constant of théh reactionK,;, is a sole

H fields, provided that appropriate caution is exercised in
ascertaining the meaning of field-dependent variables. As al-
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ready mentioned, this involves replacemenBdfy H as the SUMMARY AND CONCLUSIONS
subscript indicating the variable held fixed, when the partial (1) The field-dependent differential of the internal energy

derivative ofU, is taken with respect t& or . The result : . .
is reversal of the sign of the magnetic terms. For example, in a single _component system consists of f-our physically
Eq. (5) applies, then _dlstmct and mdepe_ndent terms. Each.of the _flrst three Ferms
is a product of a field-independent differential and a field-
dependent integration factor. This integration factor and the
(U 1)y u=—(Un/dp)yv s- (78 yariable in the differential are intensive and extensive conju-
L gate variables, respectively. The physical significance of
Hence, in this case, the effect of a fixeldfield onT, P, and  each of these three terms is as followslS, —PdV, and
{ has the same magnitude as that of a fiBefield, butitis  ¢dN are differentials of, heat, mechanical work, and work
reversed. This reversal of effect is then carried over to fieldinvolving mass transfer, in the presence of the field, respec-
dependent heat, latent heat of phase transitions, the Clausiugrely. In the absence of the field, these terms reduce to the
Clapeyron equation, and to chemical reactions. Thus, for peiconventional heat, mechanical, and mass transfer work dif-
meable materials that have a negative rate of change ggrentials, respectively. The fourth term stands exclusively
permeability with entropy, we find that at fixed, T<T, {  for the work done by the current sources in establishing the
>{, AQ(H>0)<AQ(H=0) [see Eg.(28)], I(H>0) field of the system at fixed entrof, volumeV, and mass
<I(H=0) [see Eq.(29)], {y>0 [see EQq.(37)]. Further- N. As the field and magnetic energy of the system can be
more, the field-dependent correction factor in HGS), (61), partitioned on both sides of its physical boundaries, all four
and (63) turns larger than 1. This imposes a decreas@pn terms depend on this energy and the way it is partitioned.
anda; as compared to their “field free” equilibrium values. (2) Equilibrium requires thafl, P, and { be uniform.
The effect of reversal of sign of the magnetic terms on theuniformity of T, P, and{, across interfaces that are shared
heat of reaction can be considered by inspection of E#8. by systems at equilibrium, can result in discontinuous jumps
and(73) and their related text. in the field-independent, P, and{, and vice versa.

All these changes in the effect of the field are the result of (3) In the presence of the field, isothermal and isobaric
interactions between the phases involved, in the phase traprocesses are defined as those satisfying the condition that
sition process, and the current sources. The outcome of thegeand p are fixed throughout, respectively. Such processes
interactions is expressed by the fact that, at fiked <T. If can involve variablel and P, and vice versa.
the phase transition involves a positive change in entropy, (4) In the presence of the field, the heat delivered to a
and consequently. decreases as the new phase builds up afystem in an isothermal processTidS. Consequently the
fixed T, then at fixedB, whereT>T, the magnetic part of |atent heat of the phase transition isTAs. This latent heat
T (in the new phaseincreases. This suggests that at filsd s T/T times the value of the “field free” latent hedt
a greater part of the heat content of the new phase is stored inA 5.
its magnetic field. This is associated with the occurrence of a (5) Ap extended Clausius-Clapeyron equation in the pres-
smaller value ofT in the new phase, and hence, a jump iNence of magnetic fields has been formulated. This equation

T between the two phases develops, as expected. shows that the effect of the field can be presented in terms of
At fixed H, whereT<T, a decrease i, due to forma-  an increase ims by —A (dy,/dT).
tion of a new phaséat fixed T) involves a decrease im. (6) Different forms of the mass action law in the presence

SinceT is fixed, this results in a decrease in the magnitude oPf the field have been formulated. In these formulations the
the negative magnetic part d@f, which expresses the work reaction constant retains its sole dependence on temperature
done by the demagnetizing field on its current sources. Simias a result of use of modified pressures and activities. For the
lar observations can be made for chemical reactions. ith reacting component, the modified pressiareactivity) is

The theory considered hitherto is concerned with mag.defined as the product of a field-dependent factor and the
netic fields. The procedure that allows the use of this theoryfield-independent pressuRg (or activity a;). Permeable ma-
for the case of electroquasistatic fields, is discussed next. terials are characterized by a positive factor that is less than
1. This indicates thalP; is pushed to higher equilibrium val-
ues by the field.

(7) The heat of reaction in the presence of the field

The theory developed for magnetoquasistatic fields can beas been formulated. The effect of the field is found
applied directly to electroquasistatic fields, whenever there i¢0 change the *“field free” heat of reactiol\H by
an appropriate analogy between the two fields. This analogy d(={_,»;uoH-M;/2p;)/dT. Simultaneous reactions that
is known to exist in cases involving materials that are polar-are independent ai=0, become interdependent Ht>0.
izable by the fields. In such cases, the characteristic set dfhis is a result of their collective effect on the permeability
magnetic variables can be replaced by their electric countewf the reacting mixture.
part, and then the theory can be applied, with the new elec- (8) The field-dependent thermodynamic variables, the
tric variables. For example, to this end, the BEtB, x is  heat delivered to a system, the latent heat of phase transition,
replaced by its electric analog, D, € (e.g., electric field the Clausius-Clapeyron equation, and chemical reactions, in
strength, electric displacement, and permittivity, respecthe presence of the field, all depend on the constraints im-
tively), Uy by U, (e.g., electric energy and uoM by Pg posed on this field. Reversal of the effect of the field is
(e.g., electric polarization obtained when fixedB fields are replaced by fixed fields.

F. Electroquasistatic fields
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(9) The theory developed for magnetoquasistatic fields TABLE I. Calculated values ofp and ¢ for the casey,=6.2

can be used for analogous cases of polarization in electro<10 °, representing an ideal gas such as oxygen.

quasistatic fields, by replacing the magnetic variables with

their electric analogs. H (T) T(K) @ ¥
1 273.16 24.374x10°° 1.000
APPENDIX 2 90.00 898.1%10°® 0.999
The magnetic correction factor of pressure 2 27.316 97.49810 0.990
and chemical activity 2 2.7316 0.975 ] 0.377
. . 10 90.00 22 45810 0.978
The magnetic correction factgsee Eqs(61) and (63)],
. S - 10 27.316 0.24374 0.784
for the pressure and chemical activity in the mass action law, 10 27316 24,374 2 56710~ 11
of materials that satisfy Eq45) is defined by ' R :
20 90.00 898.1% 10 0.914
J=exp(— @), (A1) 20 27.316 0.975 0.377
20 2.7316 97.496 45610743
where
_ moM-H Using Eq.(A2) for evaluation ofeg, in conjunction with Eq.
T 2pRT (A2) (A3) and the above data, gives
M= yH. A3 Xo/ ko
X (A3) ¢0="3p.» Po=poRTo. (A9)
For materials that satisfy the Langevin equation,
If the material is an ideal gas at standard conditions, then
x=CIT, (A4)
_ po=1000/22.414 44.615 mol m 3,
C=2pNuom?/k, (A5)

5 Po=101323 kgm's?
whereN, m, andk are Avogadro’s number, the dipole mo-

ment of a single molecule, and Boltzmann’s constant, re- ©o=3.9279. (A10)
spectively. _
Combining Egs(A2)—(A5) and usingR=Nk gives Suppose the reference volume susceptibility of a paramag-
netic gas, such as oxygen, ¥=6.2x10" ¢ andH=30 T,
o=pBH?T? (A6) T=90K, then using Egs(A8) and (A10), in conjunction

with the data specified above, gives=0.1695 and hence,
whereg is a constant that depends on the dipole moment opy Eq. (A1), = 0.844.

the material, Table | summarizes calculated valuesgfind ¢ for the
) casey,=6.2x 108, representing an ideal gas such as oxy-
B= E (@) (A7) gen.
6\ k |~ Clearly the effect of the field on the ideal gas is enhanced

at cryogenic temperature levels and conventional yoke mag-
It follows that according to EqSA6) and (A7), ¢ is deter-  pets that produce aT2field have a significant effect that is
mined bym, H, andT. Furthermore, since is independent greater than 0.1% for temperatures lower than 90 K. With
of p, it applies to gases as well as to condensed matter tha,perconducting magnets the effect becomes larger than
follows the Langevin equation. 2.2% in this temperature range and artfield. The domi-
For reasons of convenience, we defipg (of a given  nance of the field becomes evident as the temperature is low-
materia) as a reference value of, atH=Hy andT=T, S0  ered below 27 K.
that by virtue of Eq(A6), The comparison between two different materials can be
3 ) ) 22 done by evaluation of the ratio of their magnetic moment per
¢=¢o(H/H)(To/T)",  ¢o=PBHu/To.  (A8)  molecule. The magnetic dipole momentof a single mol-

. ecule can be related to the magnetization as follows:
The following data are used to evaluagg:

wo=4mx10"" H/m or mkgs?A~2 m= #oM (A11)

pN

R=8.314 nfkgs 2K™! mol™},
wherew is molecular weight. Hence,
Ho=1/uo(T/mkgs2A2 or Am?
my Maw;/p; (A12)
T,=273.16 K m; Muw;/p;

Mo=xoHo Am™1. Using Eqs.(A6) and (A7) at fixedH and T gives
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2 whereM , is the locked-in magnetization amdis the Lange-
. (A13)  vin function:

ﬁ_(@)z_(M2W2/P2)2_(X2W2/P2

o1 \my)  \Mwi/py)] | xawilpy
For example, consider irofsubscript 2 and oxygen(sub- a=uoVpMp-H/KT. (A20)
script 1): w,=55.847, p,= 7870 kg/ni, x,=1.0; w;=32, _
p1=1.429 kg/n, x,=6.2x10"5. Here, the counterpart of EGA8) is

Substitution of these data in EGA13) gives m,/m;
=51.11, ¢,/¢,=2612.35. Sincey,=1.0 can be obtained
from iron at a field of 2 T, we have from Table ¢,
=898.12<10 % at 90 K, and hence at this temperaturg
=2.346, /,=0.0958. Increase dfl beyond the level that is We evaluatep, with the same data used to derive E410),
necessary to saturate the iron is expected to Cha@gé’l- and assuming spherical particulates, 10 nm in diameter. The
early with the field, since above saturation, the magnetizatiofiesult is as follows:

X2H = Mz, iS ﬁxed.

VL
P =0 Vp

H
Ho

2 2
LS

T

OLO

The latent heat of phase transition can be related &s $o=55.26%0-
follows: The latent heat is given by E(B5), and the entropy . _ _ _
density of ideal gas b§3,5] For example, magnetized single domain ferromagnetic par-

ticulates have locked-in magnetic moments and when dis-
3 v persed in a carrier fluid are known to follow the Langevin
s=spt 3 RIn+RIn—, v=1p. (Al4)  equation. For a 10-nm ferromagnetic particle that is charac-
0 0 terized byuoM=0.56 T atH=1T, andT=273.16 K, the
Hence values of¢ and ¢ are ¢=30.949, »=3.623< 10 '*. Note
that due to the fact that hete~1 the use oM =M, as an

3R approximation is justified. Clearly, in this case, the magnetic
(sl IT)y =57 (A15  effect is by far the dominant one, and it is expected to be
significant also for smaller particles, e.g., of the order of a
(Il 38)y = (Il IT)y N, 1 (IS IT)y N1 few nm.

The effect of the field is expected to be significant also in

R4 ((%u) R4 ((9)() the case of colloidal paramagnetic particulates. For example,
3R\ 9T “3R Mol o7 the values ofp and ¢, which are obtained by EqA18), for
VN, VNH a 10-nm particulate aff=90K, H=2T, and y=3.4
20 X103 are ¢=2.281, y=0.102. If the field is increased to
T 3R X (A16) 10 T, then the magnetic effect remains unchanged when the
diameter of the colloidal particle decreases to 3.42 nm.
where use was made @f= uo(1+ x) and y=C/T at fixed In this context, consider the following reaction:
p.
Substitution of Eq(A16) in Eq. (35) gives JA—A;. (A22)
- MmoM -H 2 In this reactionj moleculesA combine together to form a
I=1{1+ 3pRT ):|(1+ 3 ) (A17)  colloidal nucleusA;, where subscrip} denotes the number

of molecules inA, .
where use was made f = yH. If A; is formed in the presence of a magnetic field from a
Thus, the range of temperature and field intensity wigere source of molecules that is maintained at fixed temperature
is significant, e.g., as regards its effect on the activity, applie@nd pressure, outside the field, then reactid@2) can be
also to the latent heat in the presence of magnetic fields. Ppresented as
The effect of magnetic fields on matter in the form of

colloidal particulates is considered next. The magnetic cor- jA— AL
rection factor for matter that is in the form of uniform col- jAf—>A-f,

: ) . . i A23)
loidal particulates can readily be shown to take the following m— (
form: !

where superscript denotes the presence of the field. Equa-

V,M-H .
= %, (A18) tion (63) can be rearranged as follows:
n

whereV, denotes volume of a single particulate akds — p(— o _ _

p Kp=Kpoex v . Kpo=Ky(H=0).
Boltzmann’s constank=1.38x10 2 m?kg s 2K L. P PO |=21 i po= Kl )

If the properties of the particulates are such that the mag- (A24)

netic moment is locked in so that its direction fluctuates due
to thermal agitation, then Reaction(A22) specifiesj identical reactants and one prod-

uct. Hence, in this casen=j+1, v,;=—1, ¢;=¢p,
M=LM,, L=cotha—1/a, (A19) i=1,...n—1,v,=1, Pn=Pa; and Eq.(A24) gives
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Kp=KpoeXp(joa—@a)- (A25) kB'+Al—B[+]A. (A29)
Recall that moleculea originate from a “field free” source, Reactions(A27) and (A28) show thatB molecules react in
for which ¢4=0, and hence the field to produce a nucle®; of volumeV,,, and that the
K —K B A26 assembly of liquid molecules;, which is displaced from
P PO'/’AJ’ ’/’Aj_eXp(_‘PAj)’ (A26) V,, is transferred outside the field asnolecules. Suppose

the magnetic moment per unit volume Bfis negligible as

. ' o , compared to that of. For example, this condition is satis-

or rSel?aCr?jsat :r']);e?efcrggﬁrggup‘ggésinféng’ tgiigzldpggigsgcgf, fied in a single component system whekedenotes mol-
o . i i’ ! ~ecules in the liquid state arglstands for the same molecules

negative, respectively. By virtue of EGA18), the increase in i the gaseous state, so that\iy, k<j. In this case Eq.

V,,, due to an increase i intensifies the effect of the field. (A24) reduces to

As shown above, the effect of currently available fields can

be significant down to nuclei diameter of a few nanometers. Kp=KpoeXp(®a.) (A30)

Similar conclusions can be drawn regarding the evolution .

of a less permeable nucleus in a permeable medium. Fand the field acts to suppress the formation of the gaseous

example, ifk molecules of a dissolved gd® associate to nucleus. In view of the data given above, such suppression is

form a nucleusB, that displaces an assembly of liquid mol- expected to be significant for the case of liquid oxygen, and

eculesA; of equal volumeV, away from the field, then a other permeable fluids.

where szj is the magnetic correction factor dueAg.

change in magnetization occursVfy as a result of the fol- This simple analysis points at potential uses of fields to
lowing reactions: prevent the evolution of imperfections in the growth pro-
cesses of homogeneous and uniform phases. If the imperfec-
kBf—B!, (A27)  tion introduces differences in magnetic permeability, the
field suppresses this difference, thus enhancing uniformity.
AJ-f—>jA, (A28) The larger the imperfection and the difference in permeabil-

ity, the more pronounced the field effect is expected to be.
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