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Thermodynamics of phase transitions and chemical reactions in the presence
of quasistatic electromagnetic fields
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Phase transitions and chemical reactions in the presence of electromagnetic fields are considered. The
field-dependent differential of the internal energy is described using four basic independent terms. These terms
stand for the differentials of heatT̂dS, mechanical work2P̂dV, work associated with mass transferẑdN, and
work delivered by the current sourceVH•dB. In this context, the field-dependent temperatureT̂, pressure
P̂, and chemical potentialẑ are the intensive conjugates of the field-independent entropyS, volumeV, and
massN, respectively. In this context isothermal and isobaric processes in the presence of the field must satisfy
the condition of fixedT̂ and fixedP̂, respectively. In an isothermal process, the heat delivered to a system
where an entropy changeDS occurs isT̂DS. Consequently, the latent heat of phase transitionl̂ , which is
T̂Ds, is T̂/T times its value in the absence of the field. An extended Clausius-Clapeyron equation is derived,
where the effect of the field is expressed in terms of an equivalent entropy change due to the phase transition.
Different forms of mass action laws are formulated, so as to account for the effect of the field on pressures or
activities of reactants and products of chemical reactions. These pressures, or activities, are modified by
field-dependent factors, so that the reaction constant remains a sole function of temperature, irrespective of the
presence or absence of the field. For permeable materials, these correction factors are positive, but less than
unity, and their effect is to increase the corresponding pressures, or activities, above their ‘‘field free’’ equi-
librium values. The van’t Hoff equation for a single reaction is extended in terms of the change in the heat of
reaction due to the presence of the field. Simultaneous reactions that in the absence of the field are independent,
become interdependent when the field is present through their collective effect on the mixture permeability.
The effect of replacing the constraint of a fixedB field, by a fixedH field, is shown to result in reversal of the
effect of the field on phase transitions and chemical reactions. Finally, it is shown that on a molecular scale of
paramagnetic substances such as paramagnetic ideal gases, the magnetic effect is expected to be significant at
low cryogenic temperatures. At sufficiently low temperatures, this effect can become dominant. At ordinary
temperatures, the field can have a dominant effect on colloidal particles having diameters of a few nanometers
and larger.@S1063-651X~97!12204-8#

PACS number~s!: 64.60.2i
e
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INTRODUCTION

Recently the theory of thermodynamics in the presenc
electromagnetic fields was formulated@1# and then followed
by system analysis of field-dependent thermodynamic v
ables and Maxwell relations@2#. This theory provides formu-
lations of different field-dependent intensive and extens
variables that also depend on constraints imposed on
field. Each of these field-dependent intensive variables
defined as the partial derivative of the field-dependent ene
with respect to its conjugate extensive variable. In contras
conventional, field free, thermodynamics, the fie
dependent energy possesses the property that it can
within and outside physical boundaries of a thermodyna
system. This is true, provided that the latter is the source
the field, where the energy is stored. These unique prope
of thermodynamics in the presence of fields must be refle
also in the transfer of energy as heat, mechanical work,
mass and in the laws of phase transitions and chemical r
tions. In this work the characteristics of phase transitio
regarding latent heat and the Clausius-Clapeyron equa
and chemical reactions in the presence of fields are for
lated.
551063-651X/97/55~5!/5102~11!/$10.00
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THEORY

In what follows, we set the grounds for the developme
of the theory of phase transition and chemical reactions
the presence of quasistatic electromagnetic fields. To
end, we first recapitulate formulations and physical meani
of field-dependent variables, and then use them for anal
of phase transitions and chemical reactions.

A. Field-dependent variables

The following theory concerns systems in the presence
magnetic fields. The differential of the field-dependent int
nal energy,Û, is given by@1#

dÛ5(
i50

n

j i dXi1dUM , ~1!

where

j i5~]U/]Xi !Xj , iÞ j , i , j50,...,n, ~2!

Xi is the i th, field-independent, extensive variable,U
5Û (H50) is the energy in the absence of the field, a
UM is the magnetic energy.
5102 © 1997 The American Physical Society
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UM5E
V8
E
0

B
H•dBdV8, ~3!

B5mH, ~4!

whereH andB are the magnetic field strength and magne
induction, respectively, andm is magnetic permeability. The
volumeV8 spans the entire field and in the general cas
extends to infinity, so as to include the whole space. If, a
special case, the magnetic field is confined to a volumeV
whereH andm are uniform andm is independent ofH, then

UM5 1
2VH•B5 1

2VmH25 1
2VB

2/m. ~5!

Suppose@1# UM is a function of a set consisting ofm9 vari-
ablesYm , m51,...,m9,

UM5UM~Y1 ,Y2 ,...,Ym9!. ~6!

Suppose further that this set can be separated into two i
pendent subsets. In the first subset, which consists ofm8
21 functions,Ym , m51,...,m821, is dependent only on
the current sources of the field, and consequently it is in
pendent of the system variablesXi . In the second subset, th
m92m811 functions,Ym , m5m8,...,m9, which are given
by

Ym5Ym~X0 ,...,Xn!, ~7!

are independent of the current sources of the field. Thus
differential ofUM can be expanded as follows:

dUM5 (
m51

m821

~]UM /]Ym!dYm

1 (
m5m8

m9

~]UM /]Ym!(
i50

n
]Ym

]Xi
dXi , ~8!

where the partial derivatives are taken, holding all other v
ables~on which the function depends! fixed.

Combining Eqs.~1! and ~8! gives

dÛ5(
i50

n

ĵ idXi1 (
m51

m821

~]UM /]Ym!dYm , ~9!

ĵ i5j i1 (
m5m8

m9 ]UM

]Ym

]Ym

]Xi
, ~10!

where

ĵ i5~]Û/]Xi !Xj ,Ym, iÞ j ,

i , j50,...,n, m51,...,m821 ~11!

andUM is given by Eq.~3!. Suppose the volume of a mag
netized system isV. In the general case,V andV8 differ as
the field, due to the contents ofV, can extend beyond th
system boundaries.

The magnetic energyUM , as given by Eq.~3!, in con-
junction with Eq.~4!, is a function of the field vectorsH and
B and the way they are distributed in space. By the laws
c

it
a

e-

e-

he

i-

f

electromagnetism, this distribution of the field depends
the boundaries of the system, i.e., on its geometry and
umeV. It follows thatUM is a function of the permeability
m, field ~eitherH or B!, volumeV, and the geometry of the
system. This implies that, apart from the field, the surrou
ings of the system are invariable. In a single component
tropic and homogeneous system, the permeability is a fu
tion of the temperatureT, densityr, and fieldH,

m5m~r,T,H!. ~12!

The temperature is a function of the entropyS, volumeV,
and massN of the system

T5T~S,V,N!, ~13!

andr is given by

r5N/V. ~14!

It follows that

m5m~S,V,N,H!. ~15!

If the geometry of the system is fixed, then the magne
energy becomes a function ofS, V, andN and the field~i.e.,
eitherH or B!. It is convenient to chooseB as the indepen-
dent field vector. This gives

UM5UM~S,V,N,B!. ~16!

Note that the setS,V,N,B can be separated into two inde
pendent subsets. The first subset includes field-indepen
variables only, and as such it reflects the field-independ
thermodynamic properties of the system. This subse
S,V,N and, in general notation, it is presented
X0 ,...,Xn . The second subset, i.e.,B, stands here for the
independent effect of the current sources. Replacing the
set, S,V,N, in Eq. ~10!, by the general notation o
X0 ,...,Xn gives

UM5UM~X0 ,...,Xn ,B!, ~17!

dUM5(
i50

n

~]UM /]Xi !XjdXi1~]UM /]B!XjdB,

iÞ j , i , j50,...,n. ~18!

Comparing Eqs.~8! and ~18! shows that, as expected,

~]UM /]Xi !5 (
m5m8

m9

~]UM /]Ym!~]Ym /]Xi !, ~19!

(
m51

m821

~]UM /]Ym!dYm5~]UM /]B!XjdB. ~20!

Equation~20! implies thatB can be the result of the action o
several~i.e., m821! current sources. We proceed now
formulate the field-dependent intensive variables, whi
similar to those prevailing in the absence of the field, are
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5104 55Y. ZIMMELS
conjugates ofS, V, andN. We assume that the properties
the system allowUM to be presented as a function ofB,
V, andm:

UM5UM~B,V,m!. ~21!

In accordance with the convention specified in the definit
of Eqs. ~6! and ~7!, here we haveY15B, Y25V, Y35m,
andm852, m953. Following Eq.~15!, m is a function of
S, V, N, andH, so that for evaluation of Eq.~10!, X05S,
X15V, andX25N are used. Thus, from Eq.~10!, for i51,
ĵ15T̂, andj15T,

T̂5T1~]UM /]m!V,B~]m/]S!V,N,H ~22!

for i52, ĵ252 P̂, andj252P,

2 P̂52P1~]UM /]V!m,B1~]UM /]m!V,B~]m/]V!S,N,H .
(23)

For i53, ĵ35 ẑ, andj35z,

ẑ5z1~]UM /]m!V,B~]m/]N!S,V,H . ~24!

Equations~23! and ~24! were derived in an equivalent form
elsewhere@1#. We focus our interest on Eq.~22! for further
development of heat related energy changes in the pres
of the field. Note that had we selectedH instead ofB as the
field vector in Eq.~21!, Eqs. ~22!–~24! would have been
different @1#.

For systems that are uniformly magnetized, using E
~22!–~24! and the fact thatY15B, Eq. ~9! takes the follow-
ing form:

dÛ5T̂dS2 P̂dV1 ẑdN1E
V8
H•dB dV8. ~25!

Note that the last term on the right-hand side of Eq.~25!
stands for the work done by the current source in establ
ing the field at fixedS, V, andN. If V85V, and the com-
plete field is uniform and confined within the boundari
enclosing the system, then Eq.~25! reduces to the following
simpler form@3#:

dÛ5T̂dS2 P̂dV1 ẑdN1VH•dB. ~26!

The physical significance of the terms specified in Eq.~26! is
discussed elsewhere@3#. However, due to the importance o
understanding the utility of each of these terms, e.g., reg
ing phase transitions and chemical reactions, their meanin
reiterated here. Equations~25! and~26! specify four types of
terms that have a clear thermodynamic meaning. The
term stands for the energy differential that is a function
the field-independent entropyS, with the field-dependen
temperatureT̂ as the integration factor. At fixed volumeV,
massN, and fieldB the only energy change can be due to
change in heat. This shows that, in the presence of the fi
the termT̂dS is indeed the heat differential. In the absence
the field T̂5T and the conventional heat differential, i.e
TdS, prevails. The second term stands for the fie
dependent mechanical energy differential that is a func
of the field-independent volumeV, with the field-dependen
n

ce
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pressureP̂ as the integration factor. At fixed entropyS, mass
N, and fieldB, the only energy change can be due to m
chanical work sources. This shows that, in the presenc
the field, the term2 P̂dV is indeed the mechanical wor
differential. In the absence of the fieldP̂5P and the con-
ventional pressure-volume work differential is obtained. T
third term denotes the field-dependent energy differential
to mass transfer. It is a function of the field-independe
massN, with the field-dependent chemical potentialẑ as the
integration factor. At fixed entropyS, volumeV, and fieldB,
the only energy change can be due to mass transfer.
shows that in the presence of the field, the termẑdN is
indeed the mass transfer energy differential. The fourth te
has been already defined as the work delivered by the cur
sources in magnetizing the system, at fixed entropyS, vol-
ume V, and massN. Assuming that the geometry of th
system is also fixed, the fourth term represents the ene
change due to the magnetization of the system, provided
its field independent variables are held fixed during this m
netization process.

Recognizing the significance of the intensive fiel
dependent variablesĵ i , and that their role in the presence
the field is the same as that ofj i in its absence, the condi
tions of equilibrium are thatĵ i be uniform@1#. In particular,
ĵ i must be the same across unconstrained interfaces, sep
ing two systems that are at equilibrium.

This gives rise to a jump inj i across the interface. From
Eq. ~10! this jump is given by

Dj i52D (
m5m8

m9

~]UM /]Ym!~]Ym /]Xi !. ~27!

The jump inT, P, andz, across interfaces at equilibrium i
the presence of a fixedB field, are readily obtained from Eqs
~22!–~24! by imposing fixed values ofT̂, P̂, and ẑ across
these interfaces. Upon removal of the field, these jumps
to change the position of the interface and drive heat
mass across them@3#. The reverse, i.e., regarding the effe
of imposing a field on systems at equilibrium, is also true.
the presence of the field, isothermal and isobaric proce
are defined here, as those that are carried out at fixedT̂ and
fixed P̂, respectively. It follows that such processes can e
at variableT andP, and vice versa.

B. Field-dependent heat and latent heat

Permeable materials are characterized by (]m/]S)V,N,H
,0. Using the fact that (]UM /]m)V,B,0, we obtain, at
fixed B, T̂.T, and the effect of the field is to increase th
temperature. It follows that for systems at equilibrium~or
rather quasistatic equilibrium! in the presence of the field
the change in heatQ due to a change in entropyS at fixed
T̂, is given by

DQ5T̂DS. ~28!

This is also true for processes of phase transitions in
presence of the field, whereDQ/N is the corresponding la
tent heatl̂ :
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l̂5T̂Ds, ~29!

s5S/N. ~30!

In the absence of the field the latent heat is

l5TDs. ~31!

Combining Eqs.~29! and ~31! gives

l̂5 l T̂/T. ~32!

Substitution ofT̂ from Eq. ~22! in Eq. ~32! gives

l̂5 l1~ l /T!~]UM /]m!V,B~]m/]S!V,N,H . ~33!

It follows that if the system is permeable, thenl̂. l , and the
presence of the field causes an increase in the latent
e.g., as compared to its value atH50.

If Eq. ~5! applies then

~]UM /]m!V,B52 1
2VB

2/m252 1
2VH

2 ~34!

and in this case, using Eqs.~14! and~30!, Eq.~33! reduces to

l̂5 l2
l

2rT
H2~]m/]s!V,N,H5 l2

1

2r
H2Ds~]m/]s!V,N,H .

~35!

In the presence of a fixedB field, the extra latent heat ex
presses the heat used to build up the field when the pe
ability decreases with an increase in the entropyS. The field
is also expected to affect the Clausius-Clapeyron equat
which is derived next.

C. The Clausius-Clapeyron equation—dependence on field

The chemical potential in the presence of the field can
expressed as@see Eq.~24!#

ẑ5z1zM , ~36!

wherezM is given by the magnetic term on the right-ha
side of Eq.~24!.

If Eq. ~5! applies, then at fixedB,

zM52 1
2H

2~]m/]r!S,V . ~37!

Differentiating Eq.~36! gives

dẑ5dz1dzM52sdT1vdP1dzM , ~38!
at,

e-

n,

e

where here use was made of the Gibbs-Duhem equatio
the absence of the field, andv5V/N is the molar volume.
Equation~38! can be applied to one phase on theP versus
T phase transition curve. Similarly, for the other phase~de-
noted by subscript 1! at the same point,

dẑ15dz11dzM152s1dT1v1dP1dzM1 . ~39!

Subtraction of Eq.~39! from Eq. ~38! gives

~s12s!dT2~v12v !dP2d~zM12zM !50, ~40!

where here use was made of the fact that along theP versus
T transition curve,dẑ5dẑ1 must be satisfied.

Solving Eq.~40! for dP/dT and using Eq.~31! gives

dP/dT5Ds/Dv2D~dzM /dT!/Dv

5 l /TDv2D~dzM /dT!/Dv, ~41!

where

Ds5s12s, Dv5v12v,

D~dzM /dT!5dzM /dT2dzM1 /dT,

dzM /dT5d@~]UM /]m!V,B~]m/]N!S,V,H#/dT. ~42!

If the system is magnetically linear and Eq.~37! applies, then
m5m(r,T), and sinceB is fixed,

zM5zM~r,T! ~43!

and hence

dzM5~]zM /]r!Tdr1~]zM /]T!rdT,
~44!

dzM /dT5~]zM /]r!Tdr/dT1~]zM /]T!r .

If the permeability is a linear function of the densityr, as is
the case with materials such as ideal gases@3# that follow the
Langevin equation, then

m5Kr1m0 , K5K~T!, ~45!

where, at fixed temperature,K is a constant, andm0 is per-
meability of free space. In this case, (]m/]r)S,V5K and Eq.
~37! takes the following form:

zM52 1
2B

2K/m2. ~46!

Hence
~]zM /]T!r5
1

2r
H2~122m0 /m!~]m/]T!r , H5B/m, B is fixed, ~47!

~]zM /]r!T5
1

r2
H2~m2m0!

2/m, H5B/m, B is fixed. ~48!

Substitution of Eqs.~47! and ~48! in Eq. ~44! and then the result in Eq.~41! gives

dP/dT5
l

TDv
2

B2

Dv
DF ~m2m0!

2

r2m3

dr

dT
1
122m0 /m

2rm2 S ]m

]T D
r
G , B is fixed. ~49!
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Equations~41! and~49! show that the slope of theP versus
T phase transition curve, in the presence of the field, is
ferent than the one prevailing in its absence. According
the field is expected to produce a shift in the equilibriu
P versusT curve of phase transition. The ability to contr
the field with a great degree of precision suggests that it
be used for ‘‘fine tuning’’ of phase transition processes su
as crystallization. In this context the field can be used for f
precision adjustment of the pressure and temperature o
phase transition process. This is due to the fact that the e
of the field is practically instantaneous. The effect of the fi
on the chemical potential must also be reflected in ot
equilibrium systems. In particular, this applies to equilibriu
of chemical reactions that is discussed in the following s
tion.

D. Chemical reactions

1. Single reaction

For a chemical reaction that is given by

(
i51

n

n iAi50, ~50!

the condition of chemical equilibrium between then reacting
species can be presented as@4–6#

(
i51

n

n iz i50, ~51!

whereAi , n i , andz i are the number of moles, stoichiometr
coefficient, and chemical potential of thei th reacting species
i51,...,n.

In the presence of fields, the same condition can be u
by replacingz i with ẑ i . In this case we have

(
i51

n

n i ẑ i50. ~52!

We consider first ideal gaseous systems, where thei th
chemical potential in the absence of fields,z i , is given by

z i5z0i1RT lnPi . ~53!

By virtue of Eq.~24!,

ẑ i5z0i1RT lnPi1~]UM /]m!V,B~]m/]Ni !S,V,H . ~54!

If Eq. ~5! applies, which is expected to be true for ide
gaseous systems, then

ẑ i5z0i1RT lnPi2
1
2H

2~]m/]r i !S,V . ~55!

Combining Eqs.~52! and ~55! gives

2RT ln)
i51

n

Pi
n i5(

i51

n

n i@z0i2
1
2H

2~]m/]r i !S,V#. ~56!

In the absence of the field, i.e., atH50, the sum
( i51
n n iz0i is dependent on temperature but not on press
f-
,
,

n
h
st
he
ct
d
r

-

ed

l

e.

This facilitates the well-known formulation of the equilib
rium, or mass action, constantKp as

2RT lnKp5(
i51

n

n iz0i . ~57!

This leads to the following mass action law@4–6#:

Kp5)
i51

n

Pi
n i ~58!

However, in the presence of the field the sum on the rig
hand side of Eq.~56! is no longer independent of the pre
sure and composition of the reacting mixture. This is due
the fact that at fixedB, H is an inverse function ofm, andm
is a function@see Eq.~12!# of the pressure~via the density!,
as well as composition of the reacting mixture. It follow
that, in principle, Eq.~58! cannot be used in the convention
way in the presence of the field. This difficulty can be c
cumvented by modifying the pressure through manipulat
of Eq. ~56! as follows:

2RT ln)
i51

n H PiexpF2
1

2RT
H2~]m/]r i !S,VG J n i

5(
i51

n

n iz0i , ~59!

and the field-dependent mass action law becomes

Kp5)
i51

n H PiexpF2
1

2RT
H2~]m/]r i !S,VG J n i

. ~60!

Comparing Eqs.~60! and ~58! shows that the effect of the
field can be accounted for by applying a field-dependent c
rection factor on the pressurePi , i51,...,n. In this way
Kp retains its previous meaning, which requires indep
dence of pressure, and composition, of the reacting mixt

If Eq. ~45! applies to thei th component of the reacting
mixture, then Eq.~60! can readily be shown to take the fo
lowing form:

Kp5)
i51

n H PiexpF2
m0H•M i

2r iRT
G J n i

, m0M i5~m i2m0!H,

~61!

whereM i is magnetization of thei th reacting species. Equa
tion ~61! shows that the field-dependent correction factor
exponentially dependent on the ratio of the magnetic ene
density~e.g., per unit mass of substances such as ideal ga!
and its translational component of the thermal energy d
sity. Recall the convention that negative values ofn i are
assigned to reactants and positive ones to the reaction p
ucts.

Since at fixed temperatureKp is also fixed, the condition
that the field will have no effect on the product of the eq
librium pressuresPi is obtained by setting the variablea ~as
defined below! to zero:
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(
i51

n

n im0H•M i /~2r iRT!5a50. ~62!

If a.0, thenP i51
n Pi

n i must be larger than its value atH
50, so thatKp is maintained fixed and independent of t
pressure. This means that the reaction is enhanced by
field toward the products. The reverse is true ifa is negative.
The physical implication of this effect of the field can b
described in terms of response of the system to field-rela
energy changes. Ifa.0, then the overall negative magnet
energy change due to the reaction provides an additio
driving force, which shifts the equilibrium further, so th
more products are produced. The reverse applies for the
of a,0. Note that had we started the analysis with Eq.~54!
instead of Eq.~55!, the outcome would have been the sam
but of a more general nature.

If a reacting mixture is not ideal, and as such posses
imperfect properties, then the mass action constant ca
expressed in terms of activitiesai rather thanPi , and the
counterpart of Eq.~61! is readily obtained as

Ka5)
i51

n H aiexpF2
m0H•M i

2r iRT
G J n i

, ~63!

whereKa is the mass action constant expressed in term
activities of the reactants and products. Similarly, replac
the activities in Eq.~63! by mole fractions yields a mas
action constant in terms of mole fractions of the species
the reacting mixture.

Note that Eq.~63! has a wider scope in the sense tha
can be applied to reactions in all three phases, e.g.,
liquid, and solid. The significance of the magnetic correct
factor is enhanced when the field strength is increased,
temperature is decreased, and for materials having hig
molar magnetic moment. Numerical examples that are ill
trated in the Appendix show that at the current available fi
strength, the magnetic correction factor~which is also linked
to the latent heat of phase transition! is significant in the
cryogenic region, where it can become dominant if the te
perature is sufficiently lowered. The presentation of the m
action law in the form of Eqs.~60!, ~61!, and~63! facilitates
the use of van’t Hoff’s equation for evaluation of the tem
perature dependence ofKp . This is due to the fact that, in
these equations,Kp retains its original meaning, and hence
can be treated using conditions that prevail in the absenc
the field. This also facilitates the use of the standard f
energy of the reaction for evaluation, in the conventio
way, ofKp , and vice versa. The van’t Hoff equation is give
by

d lnKp /dT5DH/RT2, ~64!

whereDH is the heat of reaction in the absence of the fie
The heat of reaction in the presence of the field is expecte
be different fromDH, since it must account for the field
dependent changes in heat that are the outcome of the
tion. In what follows, we derive the field-dependent heat
reaction. We transform Eq.~1! so as to obtain the counterpa
of the differential of the Gibbs function in the presence
magnetic fields:
the
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d~Û2TS1PV!5dĜ52SdT1VdP1zdN1dUM .
~65!

We stipulate that, for continua, the dependence ofUM on
S, V, N, and B @see Eq.~16!# can be transformed to a
equivalent dependence onT, P, N, andB.

In this case

dUM5~]UM /]T!P,N,BdT1~]UM /]P!T,N,BdP

1~]UM /]N!T,P,BdN1~]UM /]B!T,P,NdB.

~66!

Combining Eqs.~65! and ~66! gives

dĜ52@S2~]UM /]T!P,N,B#dT1@V1~]UM /]P!T,N,B#dP

1@z1~]UM /]N!T,P,B#dN1@~]UM /]B!T,P,N#dB.

~67!

It follows that

$]@z1~]UM /]N!T,P,B#/]T%P,N,B

52$]@S2~]UM /]T!P,N,B#/]N%T,P,B . ~68!

However, due to the fact thatUM is a state function and
dUM is an exact differential, we have

@]~]UM /]N!T,P,B /]T#P,N,B5@]~]UM /]T!P,N,B /]N#T,P,B

~69!

and hence, as expected,

~]z/]T!P,N,B52~]S/]N!T,P,B ~70!

holds once again irrespective of the presence of the fi
Equation~70! leads to Eq.~64!. However, in the presence o
the fieldKp can be presented as a field-dependent reac
parameter@see Eqs.~56!–~58!, where the original, unmodi-
fied, field-independent pressures are used to defineKp#. This
gives

2RT lnKp1(
i51

n

n i
1

2
H2~]m/]r i !S,V5(

i51

n

n iz0i .

~71!

As the right-hand side of Eq.~71! is a sole function of tem-
perature, the left-hand side of this equation must also pos
this property. Differentiating both sides of Eq.~71! with re-
spect toT and rearranging gives

RTd lnKp /dT

5H DH1TdF(
i51

n

n i
1

2
H2~]m/]r i !S,VG Y dTJ Y T.

~72!

If Eq. ~45! applies, then Eq.~72! takes the following form:
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d lnKp /dT

5FDH1TdS (
i51

n

n im0H•M i /2r i D Y dTG Y RT2.

(73)

It is necessary to verify first that the terms involving sums
magnetic energy densities in Eqs.~72! and ~73! indeed rep-
resent heat interaction with the field. This is true due to
fact that at fixedB ~which here implies also fixed flux link
age at the current sources!, no energy exchange between t
field and its current sources can occur. Furthermore, s
the reaction takes place at fixed pressure within a unifo
field as part of a continuum, no mechanical interactions w
external sources that involve the field exist. This leaves fie
heat interactions as the only outcome of the reaction
involves changes in the energy of the field. Equations~72!
and~73! show that, atH.0, if the temperature derivative o
the change in the magnetic part of the chemical poten
due to the reaction, is positive, then the heat of reactio
expected to be larger than that atH50. In this context, at
fixedB, if upon completion of the reaction, a decrease in
magnetic energy density of the mixture occurs~which is
larger in magnitude than any work that might have be
delivered, by the field, to external mechanical sources!, then
heat is released by the field due to this reaction. This fie
dependent heat becomes part of the heat of reaction. If,
ing the reaction at fixedB, no work is delivered by the field
to external mechanical sources, then the entire change in
field energy of the mixture turns into the field-dependent h
of reaction. The reverse is true when the energy of the fi
builds up due to the reaction. This buildup of field energy
expected to draw on the heat sources of the system,
reducing the heat available from exothermic reactions.

Hitherto we have considered single reactions. The ef
of the field on simultaneous reactions and their interdep
dence is considered next.

2. Simultaneous reactions

In the absence of the field, if there existj 8 independent
reactions that take place simultaneously, then the equilibr
of the j th reaction j51,...,j 8, that involves a total ofnj
reacting components, is given by

(
i51

nj

n j i z j i50, j51,...,j 8, i51,...,nj . ~74!

In the presence of the field the counterpart of Eq.~74! is
obtained by replacingz j i with ẑ j i . The result is

(
i51

nj

n j i ẑ j i50. ~75!

However, in the presence of the field the reactions are
longer independent. This is a consequence of variability
permeability, and magnetic energy, with composition of
mixture as the reactions proceed.

The mass action law for each reaction can be presente
one of the forms given by Eqs.~60!, ~61!, and ~63!. In this
way the reaction constant of thej th reaction,Kpj , is a sole
f
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function of temperature, and hence it retains its origin
‘‘field free’’ properties. It follows, that the selection of thi
presentation ofKpj leads to interdependence of the reactio
via their common fieldH, e.g., through their modified pres
sures. At fixedB, the fieldH is inversely proportional tom.
It is clear that in the case of a reacting mixture,m is a func-
tion of composition, temperature, and the field. This can
expressed as follows:

m5m~$r j i %,T,H!, j51,...,j 8, i51,...,nj , ~76!

where$r j i % denotes the complete set of densities in the m
ture. Equations~61! and ~63! show that for mixtures tha
satisfy Eq.~45!, the common magnetic effects of all comp
nents present in a single reaction mixture is through the fi
H5B/m($r i%,T,H), whereas the magnetic self-effect of
specific, i.e.,i th, component is through the termM i /r i .
Similarly, in simultaneous reactions, the common magne
effect of all reacting components is through the fieldH
5B/m($r j i %,T,H), whereas the specific effect of thei th
component of thej th reaction is through the termM j i /r j i .
Thus, the equilibrium must be found by solving thej 8 simul-
taneous equations given by Eq.~75!. It is only when the
effect of the field is small enough that the simultaneous
actions can be approximated as being independent. In
context, the assumption of independence of the reactions
be used as a first iteration in the solution procedure.

The theory has been presented here for the case of fixeB
fields, which implies that no energy exchange between
system and current sources of the field exist. However, c
straints other than fixedB can be imposed on the system. F
example, the constraint of a fixedB field can be replaced by
a fixedH field. This latter constraint allows energy exchan
between the current sources and the system, and henc
meaning of field-dependent thermodynamic variables m
change accordingly@1#.

E. Fixed H fields

In fixed H fields,B is a sole function ofm; see Eq.~4!.
Hence, by virtue of Eqs.~15! and~16!, UM becomes a func-
tion of S, V, andN, e.g., in the sense that these are t
variables whereby the magnetic energy can be changed.
can also be inferred from Eq.~21!, onceB is replaced byH
as the independent variable. At fixedH, UM becomes a func-
tion of V andm, which is equivalent to being a function o
S, V, andN. Here the field-dependent thermodynamic va
ables retain the form given by Eqs.~22!–~24! provided that
B, in the subscripts of the partial derivatives involvin
UM , is replaced byH as an indication that this field vector i
being held fixed. Using this new field-dependent set of int
sive variables, e.g.,T̂, P̂, and ẑ at fixedH, Eq. ~26! is re-
placed by

dÛH5T̂dS2 P̂dV1 ẑdN, H is fixed. ~77!

Thus, the thermodynamic significance of the field-depend
setT̂, P̂, andẑ, is retained, irrespective of the selection ofB
or H as the fixed field. It follows that the theory develope
for the case of fixedB fields can be applied directly to fixe
H fields, provided that appropriate caution is exercised
ascertaining the meaning of field-dependent variables. As
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55 5109THERMODYNAMICS OF PHASE TRANSITIONS AND . . .
ready mentioned, this involves replacement ofB by H as the
subscript indicating the variable held fixed, when the par
derivative ofUM is taken with respect toV or m. The result
is reversal of the sign of the magnetic terms. For example
Eq. ~5! applies, then

~]UM /]m!V,H52~]UM /]m!V,B . ~78!

Hence, in this case, the effect of a fixedH field on T̂, P̂, and
ẑ has the same magnitude as that of a fixedB field, but it is
reversed. This reversal of effect is then carried over to fie
dependent heat, latent heat of phase transitions, the Clau
Clapeyron equation, and to chemical reactions. Thus, for
meable materials that have a negative rate of change
permeability with entropy, we find that at fixedH, T̂,T, ẑ
.z, DQ(H.0),DQ(H50) @see Eq. ~28!#, l̂ (H.0)
, l̂ (H50) @see Eq.~29!#, zM.0 @see Eq.~37!#. Further-
more, the field-dependent correction factor in Eqs.~60!, ~61!,
and ~63! turns larger than 1. This imposes a decrease onPi
andai as compared to their ‘‘field free’’ equilibrium values
The effect of reversal of sign of the magnetic terms on
heat of reaction can be considered by inspection of Eqs.~72!
and ~73! and their related text.

All these changes in the effect of the field are the resul
interactions between the phases involved, in the phase
sition process, and the current sources. The outcome of t
interactions is expressed by the fact that, at fixedH, T̂,T. If
the phase transition involves a positive change in entro
and consequentlym decreases as the new phase builds up
fixed T̂, then at fixedB, whereT̂.T, the magnetic part of
T̂ ~in the new phase! increases. This suggests that at fixedB,
a greater part of the heat content of the new phase is store
its magnetic field. This is associated with the occurrence
smaller value ofT in the new phase, and hence, a jump
T between the two phases develops, as expected.

At fixed H, whereT̂,T, a decrease inm, due to forma-
tion of a new phase~at fixed T̂! involves a decrease inT.
SinceT̂ is fixed, this results in a decrease in the magnitude
the negative magnetic part ofT, which expresses the wor
done by the demagnetizing field on its current sources. S
lar observations can be made for chemical reactions.

The theory considered hitherto is concerned with m
netic fields. The procedure that allows the use of this the
for the case of electroquasistatic fields, is discussed nex

F. Electroquasistatic fields

The theory developed for magnetoquasistatic fields can
applied directly to electroquasistatic fields, whenever ther
an appropriate analogy between the two fields. This anal
is known to exist in cases involving materials that are po
izable by the fields. In such cases, the characteristic se
magnetic variables can be replaced by their electric coun
part, and then the theory can be applied, with the new e
tric variables. For example, to this end, the setH, B, m is
replaced by its electric analogE, D, e ~e.g., electric field
strength, electric displacement, and permittivity, resp
tively!, UM by Ue ~e.g., electric energy!, andm0M by PE
~e.g., electric polarization!.
l
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SUMMARY AND CONCLUSIONS

~1! The field-dependent differential of the internal ener
of a single component system consists of four physica
distinct and independent terms. Each of the first three te
is a product of a field-independent differential and a fie
dependent integration factor. This integration factor and
variable in the differential are intensive and extensive con
gate variables, respectively. The physical significance
each of these three terms is as follows:T̂dS, 2 P̂dV, and
ẑdN are differentials of, heat, mechanical work, and wo
involving mass transfer, in the presence of the field, resp
tively. In the absence of the field, these terms reduce to
conventional heat, mechanical, and mass transfer work
ferentials, respectively. The fourth term stands exclusiv
for the work done by the current sources in establishing
field of the system at fixed entropyS, volumeV, and mass
N. As the field and magnetic energy of the system can
partitioned on both sides of its physical boundaries, all fo
terms depend on this energy and the way it is partitioned

~2! Equilibrium requires thatT̂, P̂, and ẑ be uniform.
Uniformity of T̂, P̂, and ẑ, across interfaces that are shar
by systems at equilibrium, can result in discontinuous jum
in the field-independentT, P, andz, and vice versa.

~3! In the presence of the field, isothermal and isoba
processes are defined as those satisfying the condition
T̂ and P̂ are fixed throughout, respectively. Such proces
can involve variableT andP, and vice versa.

~4! In the presence of the field, the heat delivered to
system in an isothermal process isT̂DS. Consequently the
latent heat of the phase transition isl̂5T̂Ds. This latent heat
is T̂/T times the value of the ‘‘field free’’ latent heatl
5TDs.

~5! An extended Clausius-Clapeyron equation in the pr
ence of magnetic fields has been formulated. This equa
shows that the effect of the field can be presented in term
an increase inDs by 2D (dzM /dT).

~6! Different forms of the mass action law in the presen
of the field have been formulated. In these formulations
reaction constant retains its sole dependence on temper
as a result of use of modified pressures and activities. For
i th reacting component, the modified pressure~or activity! is
defined as the product of a field-dependent factor and
field-independent pressurePi ~or activityai!. Permeable ma-
terials are characterized by a positive factor that is less t
1. This indicates thatPi is pushed to higher equilibrium val
ues by the field.

~7! The heat of reaction in the presence of the fie
has been formulated. The effect of the field is fou
to change the ‘‘field free’’ heat of reactionDH by
Td(( i51

n n im0H•M i /2r i)/dT. Simultaneous reactions tha
are independent atH50, become interdependent atH.0.
This is a result of their collective effect on the permeabil
of the reacting mixture.

~8! The field-dependent thermodynamic variables,
heat delivered to a system, the latent heat of phase transi
the Clausius-Clapeyron equation, and chemical reactions
the presence of the field, all depend on the constraints
posed on this field. Reversal of the effect of the field
obtained when fixedB fields are replaced by fixedH fields.
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~9! The theory developed for magnetoquasistatic fie
can be used for analogous cases of polarization in elec
quasistatic fields, by replacing the magnetic variables w
their electric analogs.

APPENDIX

The magnetic correction factor of pressure
and chemical activity

The magnetic correction factor@see Eqs.~61! and ~63!#,
for the pressure and chemical activity in the mass action l
of materials that satisfy Eq.~45! is defined by

c5exp~2w!, ~A1!

where

w5
m0M•H

2rRT
, ~A2!

M5xH. ~A3!

For materials that satisfy the Langevin equation,

x5C/T, ~A4!

C5 1
3rÑm0m

2/k, ~A5!

whereÑ, m, andk are Avogadro’s number, the dipole mo
ment of a single molecule, and Boltzmann’s constant,
spectively.

Combining Eqs.~A2!–~A5! and usingR5Ñk gives

w5bH2/T2, ~A6!

whereb is a constant that depends on the dipole momen
the material,

b5
1

6 S m0m

k D 2. ~A7!

It follows that according to Eqs.~A6! and ~A7!, w is deter-
mined bym, H, andT. Furthermore, sincew is independent
of r, it applies to gases as well as to condensed matter
follows the Langevin equation.

For reasons of convenience, we definew0 ~of a given
material! as a reference value ofw, atH5H0 andT5T0 so
that by virtue of Eq.~A6!,

w5w0~H/H0!
2~T0 /T!2, w05bH0

2/T0
2. ~A8!

The following data are used to evaluatew0 :

m054p31027 H/m or m kg s22 A22,

R58.314 m2 kg s22 K21 mol21,

H051/m0~T/m kg s22 A22! or A m21,

T05273.16 K

M05x0H0 A m21.
s
o-
h

,

-

f

at

Using Eq.~A2! for evaluation ofw0 , in conjunction with Eq.
~A3! and the above data, gives

w05
x0 /m0

2P0
, P05r0RT0 . ~A9!

If the material is an ideal gas at standard conditions, the

r051000/22.414544.615 mol m23,

P05101 323 kg m21 s22,

w053.927x0 . ~A10!

Suppose the reference volume susceptibility of a param
netic gas, such as oxygen, isx056.231026 andH530 T,
T590 K, then using Eqs.~A8! and ~A10!, in conjunction
with the data specified above, givesw50.1695 and hence
by Eq. ~A1!, c50.844.

Table I summarizes calculated values ofw andc for the
casex056.231026, representing an ideal gas such as ox
gen.

Clearly the effect of the field on the ideal gas is enhanc
at cryogenic temperature levels and conventional yoke m
nets that produce a 2T field have a significant effect that i
greater than 0.1% for temperatures lower than 90 K. W
superconducting magnets the effect becomes larger
2.2% in this temperature range and a 10T field. The domi-
nance of the field becomes evident as the temperature is
ered below 27 K.

The comparison between two different materials can
done by evaluation of the ratio of their magnetic moment
molecule. The magnetic dipole momentm of a single mol-
ecule can be related to the magnetization as follows:

m5
m0Mw

rÑ
, ~A11!

wherew is molecular weight. Hence,

m2

m1
5
M2w2 /r2
M1w1 /r1

. ~A12!

Using Eqs.~A6! and ~A7! at fixedH andT gives

TABLE I. Calculated values ofw andc for the casex056.2
31026, representing an ideal gas such as oxygen.

H (T) T (K) w c

1 273.16 24.37431026 1.000
2 90.00 898.1231026 0.999
2 27.316 97.49631024 0.990
2 2.7316 0.975 0.377
10 90.00 22 45331026 0.978
10 27.316 0.24374 0.784
10 2.7316 24.374 2.597310211

20 90.00 898.1231024 0.914
20 27.316 0.975 0.377
20 2.7316 97.496 4.55310243
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w2

w1
5Sm2

m1
D 25SM2w2 /r2

M1w1 /r1
D 25S x2w2 /r2

x1w1 /r1
D 2. ~A13!

For example, consider iron~subscript 2! and oxygen~sub-
script 1!: w2555.847, r257870 kg/m3, x251.0; w1532,
r151.429 kg/m3, x156.231026.

Substitution of these data in Eq.~A13! gives m2 /m1
551.11, w2 /w152612.35. Sincex251.0 can be obtained
from iron at a field of 2 T, we have from Table Iw1
5898.1231026 at 90 K, and hence at this temperaturew2
52.346,c250.0958. Increase ofH beyond the level that is
necessary to saturate the iron is expected to changew2 lin-
early with the field, since above saturation, the magnetiza
x2H5M2 , is fixed.

The latent heat of phase transition can be related tow as
follows: The latent heat is given by Eq.~35!, and the entropy
density of ideal gas by@3,5#

s5s01
3

2
R ln

T

T0
1R ln

v
v0
, v51/r. ~A14!

Hence

~]s/]T!V,N,H5
3R

2T
, ~A15!

~]m/]s!V,N,H5~]m/]T!V,N,H /~]s/]T!V,N,H

5
2T

3R S ]m

]T D
V,N,H

5
2T

3R
m0S ]x

]TD
V,N,H

52
2m0

3R
x, ~A16!

where use was made ofm5m0(11x) andx5C/T at fixed
r.

Substitution of Eq.~A16! in Eq. ~35! gives

l̂5 l S 11
m0M•H

3rRT D5 l S 11
2

3
w D , ~A17!

where use was made ofM5xH.
Thus, the range of temperature and field intensity wherw

is significant, e.g., as regards its effect on the activity, app
also to the latent heat in the presence of magnetic fields

The effect of magnetic fields on matter in the form
colloidal particulates is considered next. The magnetic c
rection factor for matter that is in the form of uniform co
loidal particulates can readily be shown to take the follow
form:

w5
m0VpM•H

2kT
, ~A18!

whereVp denotes volume of a single particulate andk is
Boltzmann’s constant,k51.38310223 m2 kg s22 K21.

If the properties of the particulates are such that the m
netic moment is locked in so that its direction fluctuates d
to thermal agitation, then

M5LM p , L5cotha21/a, ~A19!
n

s

r-

g-
e

whereMp is the locked-in magnetization andL is the Lange-
vin function:

a5m0VpM p•H/kT. ~A20!

Here, the counterpart of Eq.~A8! is

w5w0

VpL

Vp0L0
S HH0

D 2S T0T D 2. ~A21!

We evaluatew0 with the same data used to derive Eq.~A10!,
and assuming spherical particulates, 10 nm in diameter.
result is as follows:

w0555.267x0 .

For example, magnetized single domain ferromagnetic p
ticulates have locked-in magnetic moments and when
persed in a carrier fluid are known to follow the Langev
equation. For a 10-nm ferromagnetic particle that is char
terized bym0M50.56 T atH51 T, andT5273.16 K, the
values ofw andc arew530.949,c53.623310214. Note
that due to the fact that hereL'1 the use ofM5M p as an
approximation is justified. Clearly, in this case, the magne
effect is by far the dominant one, and it is expected to
significant also for smaller particles, e.g., of the order o
few nm.

The effect of the field is expected to be significant also
the case of colloidal paramagnetic particulates. For exam
the values ofw andc, which are obtained by Eq.~A18!, for
a 10-nm particulate atT590 K, H52 T, and x53.4
31023 arew52.281,c50.102. If the field is increased to
10 T, then the magnetic effect remains unchanged when
diameter of the colloidal particle decreases to 3.42 nm.

In this context, consider the following reaction:

jA→Aj . ~A22!

In this reactionj moleculesA combine together to form a
colloidal nucleusAj , where subscriptj denotes the numbe
of molecules inAj .

If Aj is formed in the presence of a magnetic field from
source of molecules that is maintained at fixed tempera
and pressure, outside the field, then reaction~A22! can be
presented as

jA→ jA f ,
jA f→Aj

f ,

jA→Aj
f , ~A23!

where superscriptf denotes the presence of the field. Equ
tion ~63! can be rearranged as follows:

Kp5Kp0expS 2(
i51

n

n iw i D , Kp05Kp~H50!.

~A24!

Reaction~A22! specifiesj identical reactants and one prod
uct. Hence, in this case,n5 j11, n i521, w i5wA ,
i51,...,n21, nn51, wn5wAj

, and Eq.~A24! gives
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Kp5Kp0exp~ jwA2wAj
!. ~A25!

Recall that moleculesA originate from a ‘‘field free’’ source,
for which wA50, and hence

Kp5Kp0cAj
, cAj

5exp~2wAj
!, ~A26!

wherecAj
is the magnetic correction factor due toAj .

Since at fixed temperatureKp is fixed, the field enhances
or retards, the reaction depending onwAj

, being positive or
negative, respectively. By virtue of Eq.~A18!, the increase in
Vp , due to an increase inj , intensifies the effect of the field
As shown above, the effect of currently available fields c
be significant down to nuclei diameter of a few nanomete

Similar conclusions can be drawn regarding the evolut
of a less permeable nucleus in a permeable medium.
example, ifk molecules of a dissolved gasB associate to
form a nucleusBk that displaces an assembly of liquid mo
eculesAj of equal volumeVp away from the field, then a
change in magnetization occurs inVp as a result of the fol-
lowing reactions:

kBf→Bk
f , ~A27!

Aj
f→ jA, ~A28!
n
s.
n
or

kBf1Aj
f→Bk

f1 jA. ~A29!

Reactions~A27! and ~A28! show thatB molecules react in
the field to produce a nucleusBk of volumeVp , and that the
assembly of liquid moleculesAj , which is displaced from
Vp , is transferred outside the field asj molecules. Suppose
the magnetic moment per unit volume ofB is negligible as
compared to that ofA. For example, this condition is satis
fied in a single component system whereA denotes mol-
ecules in the liquid state andB stands for the same molecule
in the gaseous state, so that inVp , k! j . In this case Eq.
~A24! reduces to

Kp5Kp0exp~wAj
! ~A30!

and the field acts to suppress the formation of the gase
nucleus. In view of the data given above, such suppressio
expected to be significant for the case of liquid oxygen, a
other permeable fluids.

This simple analysis points at potential uses of fields
prevent the evolution of imperfections in the growth pr
cesses of homogeneous and uniform phases. If the impe
tion introduces differences in magnetic permeability, t
field suppresses this difference, thus enhancing uniform
The larger the imperfection and the difference in permea
ity, the more pronounced the field effect is expected to b
nt
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